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Abstract 

Background: Biomarker”, a merged word of “biological marker”, refers to a broad subcategory of medical signs that 
objectively indicate the state of health, and well-being of an individual. Biomarkers hold great promise for personal-
ized medicine as information gained from diagnostic or progression markers can be used to tailor treatment to the 
individual for highly effective intervention in the disease process. Optical coherence tomography (OCT) has proved 
useful in identifying various biomarkers in ocular and systemic diseases.

Main body: Spectral domain optical coherence tomography imaging-based biomarkers provide a valuable tool for 
detecting the earlier stages of the disease, tracking progression, and monitoring treatment response. The aim of this 
review article is to analyze various OCT based imaging biomarkers and their potential to be considered as surrogate 
endpoints for diabetic retinopathy, age related macular degeneration, retinitis pigmentosa and vitreomacular inter-
face disorder. These OCT based surrogate markers have been classified as retinal structural alterations (macular central 
subfield thickness and cube average thickness); retinal ultrastructural alterations (disruption of external limiting mem-
brane and ellipsoid zone, thinning of retinal nerve fiber layer and ganglion cell layer); intraretinal microangiopathic 
changes; choroidal surrogate endpoints; and vitreoretinal interface endpoints.

Conclusion: OCT technology is changing very quickly and throughout this review there are some of the multiple 
possibilities that OCT based imaging biomarkers will be more useful in the near future for diagnosis, prognosticating 
disease progression and as endpoint in clinical trials.
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Background
“Biomarker”, a merged word of “biological marker”, refers 
to a broad subcategory of medical signs that objectively 
indicate the state of health, and well-being of an indi-
vidual. These can be anatomical, biochemical, molecular 
parameters or imaging features. They are measurable by 
physical examination, laboratory assay or medical imag-
ing. In clinical practice, they are useful in refinement of 
diagnosis, measuring disease progression or predict-
ing and monitoring effects of therapeutic interventions. 

Their source can be body fluid such as plasma, urine, 
synovial fluid or tissue biopsy [1]. There are clear poten-
tial benefits in using biomarkers. Information can be 
obtained earlier, more quickly, and more economically.

Imaging biomarkers target the diseased organ or tissue 
and are hence specific indicators. Biochemical biomark-
ers in contrast, tend to integrate information from the 
entire body. Ultimately, biomarkers can be used to detect 
a change in the physiologic state of a patient that cor-
relates with the risk or progression of a disease or with 
the susceptibility of a disease to a given treatment. Bio-
markers hold great promise for personalized medicine 
as information gained from diagnostic or progression 
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markers can be used to tailor treatment to the individual 
for highly effective intervention in the disease process.

Biomarkers as surrogate endpoints
Biomarkers are often used as surrogate endpoints in clini-
cal trials. A surrogate endpoint has been defined as ‘a bio-
marker intended to substitute for a clinical endpoint’, the 
latter being ‘a characteristic or variable that reflects how a 
patient feels, functions, or survives’ [2]. Clinical endpoints 
are variables that represent a study subject’s health and 
wellbeing from the subject’s perspective. These endpoints 
have the potential to definitively demonstrate whether 
interventions in a trial are effective or ineffective, as well 
as safe or unsafe. Any measurement short of the actual 
outcome could be regarded as a surrogate endpoint bio-
marker. However, although all surrogate endpoints are 
biomarkers, not all biomarkers are useful surrogate end-
points. The ideal biomarker is one through which the dis-
ease comes about or through which an intervention alters 
the disease [3]. In looking for criteria for deciding which 
biomarkers are good candidates for surrogate endpoints 
we can turn to the guidelines that Austin Bradford Hill 
propounded for helping to analyze association in deter-
mining causation [4]. To be considered as a surrogate 
endpoint, there must be solid scientific evidence (epide-
miologic, therapeutic, and/or pathophysiologic) that a 
biomarker consistently and accurately predicts a clinical 
outcome. This requires the determination of relevance 
and validity. Relevance refers to a biomarker’s ability to 
appropriately provide clinically relevant information to the 
public, the healthcare providers, or health policy officials. 
Validity refers to the need to characterize a biomarker’s 
effectiveness or utility as a surrogate endpoint. The bio-
marker proposed as a surrogate should be capable of being 
measured objectively, accurately, precisely and reproduc-
ibly. Biomarkers are also important in the development of 
new drug therapies through identification of drug targets 
[5]. They also serve as “progression” markers to delineate 
the development and course of a disease. The changes in 
these progression markers can be used to understand the 
effect of therapy in altering the disease process.

Optical coherence tomography (OCT) is a reliable, 
quick, sensitive, non-invasive, user-friendly device that 
provides high-resolution in  vivo imaging of retinal 
microstructures. OCT based surrogate endpoints have 
proved useful to identify and study the disease process 
(diagnostic, prognostic and in clinical trial) in various 
ocular disorders.

The aim of this review article is to analyze various OCT 
based imaging biomarkers and their potential to be con-
sidered as surrogate endpoints for diabetic retinopathy 
(DR), age related macular degeneration (AMD), retini-
tis pigmentosa (RP) and vitreomacular interface (VMI) 

disorder. These OCT based surrogate markers have been 
classified as retinal structural alterations [macular cen-
tral subfield thickness (CST) and cube average thickness 
(CAT)]; retinal ultrastructural alterations [disruption of 
external limiting membrane (ELM) and ellipsoid zone 
(EZ), thinning of retinal nerve fiber layer (RNFL) and 
ganglion cell layer (GCL)]; choroidal surrogate end-
points; and vitreoretinal interface endpoints.

Biomarkers in diabetic retinopathy
Diabetic retinopathy (DR) is characterized by microa-
neurysms, capillary nonperfusion, and ischemia within 
the retina, ultimately leading to neovascularization and/
or macular edema. Diagnosis is mostly based on fun-
dus examination and fundus florescence angiography. 
But SD-OCT based biomarkers helps us to identify the 
ultrastructural alterations in retina even in early phases 
of the disease and their gradation increases with severity 
of DR. These biomarkers are also useful to evaluate the 
response to therapy and modify our treatment protocol 
accordingly. Thus these biomarkers serve as an endpoint 
in clinical trial.

Structural alterations
SD-OCT based macular CST and CAT provide reliable 
objective standard estimates for screening of diabetic 
macular edema [6]. Several studies have correlated OCT 
based retinal thickness with visual acuity in diabetic mac-
ular edema [7–10]. We observed an increase in CST and 
CAT on SD-OCT with increased severity of retinopathy. 
CST and CAT serve as surrogate markers for prognosti-
cating the disease severity. Targeted screening of diabetic 
macular edema, in a population, by these imaging bio-
markers serve as a significant indicator for progression 
of disease process within the grade of retinopathy, which 
may not be evident clinically.

Disorganization of the foveal retinal inner layers and 
photoreceptor ELM disruption have been documented as 
robust SD-OCT based imaging biomarkers for predict-
ing visual outcome in eyes with center involving diabetic 
macular edema. Investigation shows that disorganiza-
tion of the retinal inner layers seems to be correlated 
with current visual acuity in individuals with existing or 
resolved centres involved DME. Disorganization of the 
retinal inner layers affecting 50% or more of the central 
1-mm-wide zone centered on the fovea is associated with 
worse visual acuity. This holds true even in eyes with 
reduced vision despite edema resolution or, conversely, in 
eyes with good vision despite concurrent edema [11].

Ultrastructural alterations
Retinal photoreceptor ELM and EZ disruption grad-
ing systems [12] may serve as surrogate biomarkers in 
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determining the progression of disease. Progression of 
structural alterations with severity of diabetic retinopa-
thy has been graded in our earlier studies. Grade 0 no 
disruption of ELM and EZ; grade1 ELM disruption but 
intact EZ; grade 2 both ELM and EZ disruption [13] 
(Fig. 1). These grades co-relate with log mar visual acu-
ity. It was also showed for the first time that ELM disrup-
tion occurred earlier than disruption of the EZ. This was 
based on the observation that the ELM has tight junc-
tions similar to those between retinal pigment epithelium 
(RPE) cells. Therefore, the ELM acts like the third outer 
blood retinal barrier and its disruption contributes to 
fluid accumulation in diabetic macular edema. The dis-
ruption of the EZ is secondary to disrupted ELM. These 
classification systems provide a systematic approach 
to the diagnosis and management of diabetic macular 
edema and are useful for execution and analysis of clini-
cal studies [14].

Various studies showed a correlation of RNFL thinning 
with severity of type 2 DR on SD-OCT [15]. Significant 
decrease in RNFL thickness was observed with increase 

in the severity of DR (Fig.  2). RNFL thinning is associ-
ated with progression of DR and poor glycemic control 
[16, 17]. Rodrigues et al. [18] reported that neuroretinal 
changes precede vascular signs in diabetes mellitus. They 
observed a significant thinning of GCL and RFNL in 
patients with diabetes mellitus with no DR (Fig. 3). 

A new parameter, “parallelism,” has been projected 
to evaluate retinal layer integrity using SD-OCT. OCT 
images are skeletonized and the orientation of segmented 
lines in the image is termed “parallelism”. The orientation 
of photoreceptor layer status at the fovea has been cat-
egorized, including continuity of the ELM, inner segment 
EZ, and the presence of hyperreflective foci in the outer 
retinal layers. Parallelism was observed to be significantly 
lower in eyes with diabetic macular edema in comparison 
to normal eyes. A positive correlation with visual acuity 
was also documented. Eyes with an intact EZ or ELM had 
significantly better visual acuity and higher parallelism 
than eyes with a discontinuous or absent EZ or ELM. Sig-
nificantly higher parallelism and better visual acuity was 
observed in the group without hyperreflective foci in the 
outer retinal layers. This novel image parameter ‘paral-
lelism’ serves as a potential biomarker to prognosticate 
visual outcome in diabetic macular edema [19].

Choroidal surrogate endpoints
Choroidal thickness can be measured using SD-OCT 
high-definition raster scans in the majority of diabetic 
eyes. Choroidal thickness is altered in diabetes and 
related to the degree of severity of retinopathy [20, 21]. 
Presence of diabetic macular edema is associated with a 
significant decrease in the choroidal thickness. Regatieri 
et  al. [22] observed that the mean subfoveal choroidal 
thickness was thinner in patients with diabetic macular 
edema or treated proliferative diabetic retinopathy, com-
pared with normal subjects. Choroidal morphological 
features are altered in patients with moderate to severe 
DR [23].

Biomarkers in age related macular degeneration
Age related macular degeneration (AMD) is a progressive 
degenerative disorder leading to gradual deterioration of 
central vision. One of the early clinical features in AMD 
is the appearance of drusen. On SD-OCT, drusen are 
defined by an elevation of the overlaying RPE above a cer-
tain threshold. One of the advantages of using SD-OCT 
imaging for measuring and following drusen over time 
is the capability of capturing the two and three dimen-
sional features of drusen using cross-sectional B-scans, 
Enface topographical maps, and drusen volume and area 
measurements. When using cross-sectional B-scans, the 
integrity of the RPE and the photoreceptors overlying 
drusen can be visualized in great detail. SD-OCT images 

Fig. 1 Spectral domain optical coherence tomography showing 
grades of disruption of the ELM and EZ. a Grade 0: no disruption of 
ELM and EZ. b Grade 1: ELM disruption (white arrowhead), EZ intact. c 
Grade 2: both ELM and EZ disrupted (yellow arrow)
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can show structural changes predictive of disease pro-
gression to late AMD, such as the intra-or subretinal fluid 
indicative of neovascular AMD [24], hyper reflective foci 
overlying drusen, subsidence of the outer retina, and het-
erogenous internal hyper reflectivity of drusenoid lesions 
indicative of nascent geographical atrophy [25], and cho-
roidal thickness measurements below drusen of <135 µm 
[26], which is indicative of evolving geographical atrophy.

Structural alteration
SD-OCT imaging has the advantage that it can measure 
changes in drusen volume, which is a far more sensitive 
technique for measuring changes in drusen size com-
pared with area measurement. The reason why drusen 
volume was found to be a more sensitive indicator of 

drusen growth compared with area measurements is 
because area measurements tended to plateau while 
drusen volume continued to increase over time. Folgar 
et al. measured retinal pigment epithelium-drusen com-
plex (RPEDC) volume to predict progression of interme-
diate AMD. Greater baseline OCT drusen volume was 
associated with progression to choroidal neovasculari-
sation. Greater baseline RPEDC abnormal thinning vol-
ume was associated with significant increase in RPEDC 
abnormal thinning volume, and progression to central 
and non-central geographical atrophy [27].

The FDA approved, commercially available, and fully 
automated SD-OCT drusen segmentation algorithm 
offers an accurate, reliable, and standardized method 
for following drusen morphology over time [28–31]. A 

Fig. 2 Retinal Nerve Fiber Layer (RNFL) thickness analysis using optic disc cube 200 × 200 feature depicting on RNFL thickness deviation map a left 
eye of patient with non-proliferative diabetic retinopathy showing RNFL thinning, b left eye of patient with proliferative diabetic retinopathy show-
ing thinning of RNFL



Page 5 of 10Phadikar et al. Int J Retin Vitr  (2017) 3:1 

drusen baseline volume of 0.03 mm3 has been shown to 
be suitable to follow drusen growth [32] and the cube-
root strategy should be used to evaluate drusen growth/
shrinkage over time [33].

Ever since OCT became available, a huge effort has 
been made to identify OCT biomarkers that facilitate 
neovascular age related macular degeneration (nAMD) 
management and provide solid surrogate variables for 
treatment response and functional prognosis [34]. Three 
pathologic changes affecting central retinal morphol-
ogy have been described in nAMD patients; intrareti-
nal cystoid fluid, subretinal fluid, and pigment epithelial 
detachment [35, 36]. The presence of exudative cystoid 
fluid is an important finding on OCT as cysts are asso-
ciated with a higher risk for visual loss associated with 
fibrosis and atrophy [37]. Therefore, intraretinal cystoid 
fluid is considered the most relevant prognostic bio-
marker in nAMD [38]. In end stage AMD, intraretinal 
cystoid fluid may be present above the atrophic scar, 
which appears as a hyperreflective and thickened RPE 
on OCT. The presence of degenerative cystoid fluid and 

an underlying fibrotic scar are thought to be irreversible 
and patients may not benefit from further anti-VEGF 
therapy.

Despite its initial popularity functional outcomes cor-
relate poorly with central retinal thickness. Solely relying 
on CRT to make clinical decisions or as retreatment cri-
teria in clinical trials is not recommended [39, 40]. How-
ever, central retinal thickness gives a first impression of 
retinal topography [41].

The optical density ratio (ODR) might be a valuable 
biomarker in nAMD as it correlates well with BCVA 
under anti-VEGF therapy and may be useful for differen-
tiation as well as prognosis [42]. ODR compares the opti-
cal density of fluid accumulation in or under the retina 
to the optical density of the vitreous body. Optical den-
sity ratios change in the course of the disease because the 
blood retinal barrier regains function under anti-VEGF 
therapy and prevents the choroidal neovascularisation 
from leaking. A high optical density signal indicates 
increased reflectivity of the fluid accumulation, which 
is assumed to be caused by the protein concentration in 
the subretinal fluid [43] and is therefore thought to be a 
direct indicator for the blood-retinal barrier function 
[44]. Further Ahlers et al. showed that ODR changes cor-
relate well with visual acuity changes under anti-VEGF 
therapy. Studies with larger sample sizes and longer fol-
low-up are however needed to determine sensitivity and 
specificity for clinical use.

Ultrastructural alterations
Drusen and intraretinal migration of retinal pigment epi-
thelium have been associated with hyperreflective foci 
(HF) detected by SD-OCT. Proliferation and inner retinal 
migration of HF occurred during follow-up in eyes with 
intermediate AMD has been observed. HF proliferation 
and migration serve as biomarkers for progression of 
geographic atrophy [45].

External limiting membrane together with ellipsoid 
zone is considered a criterion that directly reflects photo-
receptor function [46]. However, ELM is no predictor for 
individual loss or recovery in BCVA, but rather mirrors 
the current functional state of the retina [47].

It has been shown histologically that photoreceptors 
overlying drusen undergo degeneration. SD-OCT and 
adaptive optics has been used to monitor drusens over 
time for their progression in terms of size and their direct 
effect on the overlying photoreceptors [48]. With the use 
of microperimetry, functional data of photoreceptors can 
be obtained. These qualitative imaging-based biomarkers 
provide a valuable tool for detecting the earlier stages of 
the disease, tracking progression, and monitoring treat-
ment response.

Fig. 3 Ganglion Cell Analysis in a patient of diabetes showing thin-
ning in thickness of GCL in GCL thickness map (a), deviation map (b), 
GCL sectoral quantative analysis (c). d Cross-sectional retinal imaging 
of GCL (layer)
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Choroidal surrogate endpoints
There is thickening of choroid in the eyes with polypoi-
dal choroidal vasculopathy (PCV) [49, 50]. A significant 
reduction in subfoveal choroidal thickness is noted after 
anti-VEGF therapy in AMD and PCV [51, 52]. As stated 
earlier choroidal thickness measurements below drusen 
of <135  µm [26], is indicative of evolving geographical 
atrophy.

Biomarkers in retinitis pigmentosa and other 
inherited macular disorders
Structural alteration
SD-OCT line scans serve as tool for structural biomark-
ers and full-field standard automated perimetry serve as 
functional biomarkers in patients with autosomal domi-
nant retinitis pigmentosa. The total photoreceptor layer 
as well as the photoreceptor EZ width have been docu-
mented to have a significant correlation with functional 
biomarker of visual sensitivity obtained on automated 
perimetry [53].

Ultrastructural alteration
The edge of the EZ in patients with Retinitis Pigmentosa 
indicates a transition zone between relatively healthy and 
relatively degenerate retina. Birch et al. [54] reported that 
the EZ provides a sensitive biomarker for progression 
in retinitis pigmentosa. They also suggested that OCT 
identification of the EZ in each patient may allow for the 
design of patient-specific visual fields to monitor disease 
progression in clinical trials [55].

SD-OCT images of patients suffering from inherited 
macular diseases can be of value to assess the integrity 
of the photoreceptor layer. Giannini et  al. showed that 
texture analysis was valuable to characterize the struc-
ture and texture of the regular horizontal stratification 
of the photoreceptor layer in SD-OCT images. This 
method was highly sensitive for assessing the pathologi-
cal changes of the ellipsoid zone in patients compared 
with age-matched controls [56].

Stargardt disease is an autosomal recessive macular 
dystrophy, linked to mutation of ABCA4 gene, charac-
terized by early onset, rapid progression and poor vis-
ual outcome. Mutation in ABCA4 results in abnormal 
accumulation in RPE and consequent RPE degeneration 
and photoreceptor disruption. This results in macular 
atrophy and fleck like deposits in the retina of vary-
ing size and shapes. SD-OCT is helpful in these cases 
in revealing photoreceptor disruption and appropriate 
localization of the flecks in different layers of the retina 
and their anatomic configuration with one another [57]. 
SD-OCT can identify thickening and increased hyper-
reflectivity of the external limiting membrane and can 
serve as possible transient biomarker of early Stargardt 

disease [58]. Three-dimensional SD-OCT imaging pro-
vided novel findings showing presence of hyper-reflec-
tive flecks not only at the level of RPE and ONL but also 
at sub-RPE level in the case of stargardt disease [59] 
(Fig. 4).

Biomarkers in disorders of the vitreomacular 
interface
Optical coherence tomography is the gold standard for 
the diagnosis and management of vitreomacular interface 
(VMI) diseases [60, 61]. Clinical biomicroscopic exami-
nation and other imaging modalities are limited in their 
capabilities to fully diagnose and document diseases of 
the VMI as vitreous membranes are often clinically invis-
ible. SD-OCT is clinically useful to determine if a poste-
rior vitreous detachment is complete, which may inform 
the management of VMI diseases. The panel of vitreo-
retinal disease experts provided anatomic definitions and 
classification of vitreomacular adhesion (VMA), vitreo-
macular traction (VMT) and full thickness macular hole 
(FTMH) [62].

Vitreoretinal interface endpoints
Three dimensional imaging along with segmentation 
techniques provided comprehensive evaluation of the 
surface topography as well as foveal and extrafoveal 
anatomical configuration of vitreomacular affection [63] 
(Fig.  5). VMT can be subclassified by the diameter of 
vitreous attachment to the macular surface as measured 
by OCT, with attachment of 1500 μm or less defined as 
focal and attachment of more than 1500  μm as broad. 
When associated with other macular disease, VMT is 
classified as concurrent. SD-OCT provides high-resolu-
tion images to judge whether VMA is isolated or con-
current. OCT can also be used to sequentially follow 
VMT over time to detect resolution of the traction or, 

Fig. 4 Three dimensional visualization shows flecks at the level of 
retinal pigment epithelium (enclosed in black circle)
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in some cases, progression to FTMH. OCT is necessary 
for an accurate diagnosis and guides preoperative deci-
sion-making and surgical planning [64]. SD-OCT has 
also been helpful to explain patient’s symptoms post-
ocriplasmin [65].

Epiretinal membrane
There is a wide range of pathology from epiretinal mem-
branes (ERMs) that can be visualized by SD-OCT.

Structural alterations
A thin ERM may cause minimal alteration of the underly-
ing retinal architecture with only a slight change in the 
foveal contour. However, ERMs can also result in a com-
plete loss of the foveal contour with cystoid intraretinal 
fluid and marked thickening of the retina. More subtle 
findings on SD-OCT can include hypo-reflective cystic 
spaces visualized between the ERM and the internal lim-
iting membranes. The thickness of the ERM and degree 
of macular distortion and pseudocyst formation can 
help prognosticate the benefit of vitrectromy with mem-
brane peel or prompt investigation of other causes for the 
patient’s symptoms.

Ultrastructural alteration
SD-OCT is useful to predict the outcome after ERM 
peeling. Multiple studies of eyes with ERM have dem-
onstrated that the preoperative integrity of the EZ on 
SD-OCT helps prognosticate postoperative visual acuity 
[66–68].

“Parallelism,” has also been projected to evaluate retinal 
layer integrity in individuals with epiretinal membrane. 
The more parallel the retinal layers, the better the visual 
acuity. Parallelism is also documented to significantly 
correlate with metamorphosia [69].

Future prospectives
With advanced OCT systems commercially available, 
the great challenge is to find ways to enhance tissue con-
trast or add functional tools to obtain more information 
in addition to the recording of morphological structures 
and thus extend the clinical applicability of OCT. Func-
tional approaches are of great interest as early diagno-
sis of retinal changes is known to be of vital importance 
because structural pathologies might be linked to irre-
versible damage and visual loss. Doppler OCT and polar-
ization-sensitive OCT are currently most commonly 
used in retinal studies. These systems measure func-
tional variables such as blood flow and velocity, as well 
as enhanced tissue contrast. Spectroscopic OCT is a func-
tional extension of OCT, allowing for example oxygen 
measurements in combination with OCT measurements 
[70, 71]. As changes in oxygen consumption are associ-
ated with changes in various diseases, including AMD 
[72], it could facilitate future oxygen measurements 
and help diagnose retinal diseases earlier. Photoacoustic 
tomography could enable oxygen saturation mapping and 
high-resolution visualization of retinal and choroidal vas-
cularization [73, 74]. The current gold standard when it 
comes to functional measurements of the retina is elec-
trophysiology. It is time consuming and has limited depth 
resolution. Optophysiology is an OCT-based, contact-free 
technique that allows optical imaging of retinal responses 
to stimuli such as light flickering [75, 76].

Conclusion
OCT based imaging biomarkers helps us to pick up dis-
ease at an early stage, to confirm our diagnosis in case of 
dice situation, grade the severity of disease (both quali-
tatively and quantitatively) and to modify our treatment 
regimen accordingly. To conclude CST and CAT are 
increased in diabetic macular edema. Significant decrease 
in RNFL, GCL and choroidal thickness is associated with 
increase in the severity of DR. SD-OCT imaging can be 
used for measuring and following drusen over time. 
Hyper reflective foci overlying drusen, subsidence of the 

Fig. 5 Three dimensional imaging along the X plane showing vitreo-
retinal interaction with elevation of inner retinal layers at sites of 
persistent attachment of vitreous
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outer retina, and heterogenous internal hyper reflectivity 
of drusenoid lesions is indicative of nascent geographical 
atrophy, and decrease in choroidal thickness is indicative 
of evolving geographical atrophy. Drusen volume can pre-
dict progression of intermediate AMD. Three pathologic 
changes affecting central retinal morphology in neovas-
cular AMD patients are; intraretinal cystoid fluid, subreti-
nal fluid, and pigment epithelial detachment. The optical 
density ratio (ODR) is a valuable biomarker in nAMD and 
is thought to be a direct indicator for the blood-retinal 
barrier function. Increased thickness of choroid is seen 
in eyes with PCV. External limiting membrane (ELM) 
together with ellipsoid zone and microperimetry directly 
reflects photoreceptor function. Disorganization of the 
foveal retinal inner layers and photoreceptor EZ/ELM 
disruption have been documented as robust SD-OCT 
based imaging biomarkers for predicting visual outcome 
in eyes with center involving diabetic macular edema, 
retinitis pigmentosa and other inherited macular disor-
ders. Hyperreflectivity of the external limiting membrane 
and can serve as possible transient biomarker of early 
Stargardt disease. Novel imaging parameter ‘parallelism’ 
serves as a potential biomarker to prognosticate visual 
outcome in diabetic macular edema and ERM. Three 
dimensional imaging along with segmentation techniques 
provided comprehensive evaluation of the surface topog-
raphy as well as foveal and extrafoveal anatomical config-
uration of vitreomacular interface disorders.

OCT technology is changing very quickly and through-
out this review there are some of the multiple possibili-
ties that OCT based imaging biomarkers will be more 
useful in the near future for diagnosis, prognosticating 
disease progression and as endpoint in clinical trials.
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